Linear actuators with toothed belt drive

The linear actuators in this MAI supplement the range of actuators in *INA publication* ALE, "Driven linear units". All these series were developed within the framework of special applications and have since proven themselves in numerous volume applications.

The basic elements of the actuators are made from anodised profiled aluminium sections and the actuators themselves are designed according to a modular concept. Due to their integrated construction, they are very compact and can therefore be used to achieve significant space savings across the handling equipment sector. These ready-to-fit linear actuators give particularly cost-effective complete solutions, in contrast to expensive, time-consuming customer designs.

The linear actuators are driven by wear-resistant toothed belts and are fitted with various guidance systems. Dependent on the guidance system fitted, they can be used to move heavy loads at high speed and can achieve high positioning and repeat accuracies. For synchronised opposing motion, two of the series have carriages that move towards or away from each other. In its role as a system supplier, INA offers the appropriate couplings, gearboxes and motors for these actuators as well as a user-friendly control system. These components are matched to the various series and complete the range of linear actuators.

Product range

Overview

Features	Characteristics	Dimensions $B_7 \times H$	Standard carriage/ motion			
Linear actuator						
MLFI 50 086 B ZR	 comprising support rail, carriage, toothed belt drive, return units can support loads from all directions one toothed belt clearance-free track roller guidance system for horizontal and vertical mounting positions can be fitted with additional carriages positional deviation ≤ ±0,1 mm 		173.571			
MLFI 140 3ZR MLFI 200 3ZR	 comprising support rail, carriage, toothed belt drive, return units can support loads from all directions three toothed belts clearance-free track roller guidance system highly suitable for vertical mounting position due to high security provided by three belts can be fitted with additional carriages positional deviation ≤ ±0,1 mm 	MLFI 200 3ZR 145 MLFI 140 3ZR 105 180 260	173 567			
MKUVE 20 B ZR	 comprising support rail, carriage, toothed belt drive, return units can support loads from all directions one toothed belt clearance-free, preloaded KUVE guidance system can be fitted with additional carriages positional deviation ≤ ±0,1 mm 		173 570			
MKKUSE 20 ZR	 comprising support rail, carriage, toothed belt drive, return units can support loads from all directions for synchronised, opposing motion of the carriages two vertical toothed belts clearance-free, preloaded KUSE guidance system positional deviation ≤ ±0,1 mm per carriage 	110 88 88	173 568			
MKLF 32ZR MKLF 52ZR	 comprising support rail, carriage, toothed belt drive, return units can support loads from all directions for synchronised, opposing motion of the carriages one toothed belt clearance-free track roller guidance system lubrication and wiper units on end faces positional deviation ≤ ±0,1 mm per carriage 	155 MKLF 52 155 ZR 86 125 125 82 MKLF 32 086 ZR 173 566	173 569			

Linear actuator with track roller guidance system and toothed belt drive

Series MLFI 50 086 B ZR

	F	'age
	Design and safety guidelines	6
•@•	Accuracy	9
Anna	Ordering example and ordering designation	10

A	Carriage
Features	3 200
 Linear actuators with track roller guidance system and toothed belt drive are complete units comprising: a support rail – the supporting profiled section is extremely rigid and suitable for spanning large gaps; it has two high alloy steel shafts arranged in parallel one carriage running in the support rail – guidance by three track rollers a toothed belt drive two return units can support forces from all directions and moments about all axos 	
 are suitable for moderate loads can also be fitted with more than one driven carriage have a clearance-free guidance system the track rollers are adjusted against the raceways by means of eccentric bolts run with high positional accuracy if the servo controller COMPAX is used, the positional accuracy is ≤±0,1 mm 	 anodised aluminium saddle plate with T-slots three track rollers eccentric bolts for clearance-free adjustment of the track rollers against the raceway driven by one toothed belt integral clamping devices for toothed belt on both sides lubrication holes in the longitudinal faces, closed off by stud bolts 12
are suitable for:	Support rail with return unit
 accelerations up to 40 m/s² speeds up to 8 m/s operating temperatures from -20 °C to +80 °C are easy to fit the carriage and support rail have T-slots for standard T-nuts or fixing lugs. The components can therefore be easily screwed to the adjacent construction are particularly suitable, due to the T-slots, for modular constructions are maintenance-free and the raceways can be relubricated the carriage, toothed belt drive and return units require no maintenance the raceways of the track rollers are lubricated via lubrication holes in the carriage are versatile in application due to a comprehensive 	Support rail
range of accessories.	 composite rail made from anodised profiled aluminium supporting section return unit housing made from anodised profiled aluminium return shaft with maintenance-free ball bearings wiper brushes to protect the return area from contamination

Linear actuator with track roller guidance system and toothed belt drive

Design and safety guidelines

Idling drive torque

With constant drive speed and a horizontally mounted actuator, the drive torque does not vary significantly as a function of the mass to be moved.

With increasing speed, the drive torque also increases (Figure 1).

Figure 1 · Idling drive torque in horizontal mounting position of linear actuator MLFI 50 086 B ZR

Combination with actuator components

In its role as a system supplier, INA offers not only actuators but also the appropriate components including coupling housings, couplings, gearboxes and motors (Table 1). These components are precisely matched to the actuators and thus complement the range of linear actuators in an optimum manner.

Table 1 · Possible combinations with actuator components	Table 1	•	Possible	combir	nations	with	actuator	components
--	---------	---	----------	--------	---------	------	----------	------------

Linear actuator	Coupling housings	Couplings	Gearboxes	Motors
MLFI 50 086 B ZR	KGEH MLFI 50 B ZR-80/100/M6	KUP 560-56 20H7-20H7	GETR PL 90	MOT SMH 82
				MOT SMHA 82-BR
	KGEH MLFI 50 B ZR-60/ 75/M5	KUP 560-56 20H7-16H7	GETR PL 70	MOT SMH 60
				MOT SMHA 60-BR

Drive variants

The possible positions of the drive are shown in Figure 2. Description of the suffixes: see Table 2.

Table 2 · Drive variants – suffixes

Drive system Suffix	Designs
OA	Without drive
AR	Drive shaft on right side
AL	Drive shaft on left side
RL	Drive shaft on both sides (right and left)

INA 7

Linear actuator with track roller guidance system and toothed belt drive

Lubrication

Track rollers

The track rollers in the carriages are greased with a high quality lithium complex soap grease in accordance with DIN 51825–K3K–30 and are maintenance-free.

Raceways

The raceways for the track rollers must be lubricated at particular intervals.

The relubrication intervals are essentially dependent on: the travel speed

- the load
- the operating temperature
- the stroke length
- the environmental conditions; the cleaner the operating environment, the lower the lubricant consumption.

Since it is not possible to calculate all the influencing factors, the time at which relubrication must be carried out and the quantity of lubricant which must be used can only be determined under actual operating conditions. If no precise data are available, the values according to Table 3 are valid for many applications.

Relubrication must be carried out at the latest when fretting corrosion first occurs – this can be identified by a reddish discolouration of the raceways or the outside surface of the track rollers. Subsequent lubrication intervals must be shortened!

The support rail raceways are lubricated by a felt insert which is soaked with oil by means of lubrication nipples in the side. Oils of type CL and CLP to DIN 51 517 with a viscosity of ISO VG 220 are recommended.

Relubrication should preferably be carried out with several partial quantities at various times instead of the complete quantity at the time of the relubrication interval. The support rail raceway is lubricated by an oil-soaked felt insert. Relubrication is carried out via two lubrication holes (1) on the longitudinal faces of the carriages (2) (Figure 3). Relubrication can therefore be carried out from either the left or right side of the carriage.

The area around the lubrication holes and the lubricant must be clean!

Lubrication should only be carried out on linear actuators still warm from operation!

Move the carriage during lubrication!

Further information on lubricant quantities is given in *INA publication "ALE"*!

Figure 3 · Lubrication points – MLFI 50 086 B ZR

Table 3 · Relubrication quantities – guide values

Linear actuator	Oil quantity per carriage ml
MLFI 50 086 B ZR	2 to 3

The linear actuators are precision straightened and the tolerances are better than those to DIN 17615 (Table 4 and Table 5). The tolerances are arithmetic mean values.

The method for determining the straightness of the support rail is shown in Figure 4. For lengths in excess of 6 000 mm, the straightness tolerance t_2 , t_3 may show a linear increase of 0,5 mm per 1000 mm.

Table 4 .	l enath	tolerance	of linear	actuators
	Lengin	toler and ce		actuators

Length of actuator L _{tot}	Tolerance
mm	mm
L _{tot} <1000	±2
1000 ≦L _{tot} <2000	±3
2000 ≦L _{tot} <4 000	±4
4000 ≦L _{tot}	±5

Table 5	Straightness	toloranco	ofsi	innort	rail
	Straignmess	tolerance	UI SU	upport	Tall

Length	MLFI 50 086 B ZR							
of support rail	t ₂	t ₃	Torsion					
mm	mm	mm	mm					
<1000	0,4	0,3	0,8					
1000 ≦2000	0,8	0,5	1					
2000 ≦3000	1,2	0,7	1,2					
3000 ≦4000	1,5	1	1,6					
4000 ≦5000	1,9	1,2	1,8					
5000 ≦6000	2,5	1,5	2					
6000 ≦7000	2,9	1,8	2,2					
over 7000	3,4	2,1	2,4					

Figure 4 · Straightness tolerance of support rail for MLFI 50 086 B ZR

Linear actuator with track roller guidance system and toothed belt drive

Crdering example and ordering designation

Ordering example

Ordering designation:

1 off MLFI 50 086 B ZR AL/4 000-3 534 (Figure 5).

Note

<u>/!</u>`

Note total length of carriage!

For a second carriage, use the suffix W2!

If two or more carriages are arranged in series, the distance between the carriages must be stated in the order!

Figure 5 · Ordering example and ordering designation – linear actuator MLFI 50086 B ZR AL/4000-3534

Dimension tables

Linear actuator with track roller guidance system and toothed belt drive

Series MLFI 50 086 B ZR

MLFI 50 086 B ZR

Dimension table · Dimensions in mm														
Designation Mass			Dimensions		Mounting dimensions									
	G _{tot} ≈kg	G _{Law} ²⁾ ≈kg	Н	В	L	L ₁	B ₁	B ₄	B ₇	B ₈ P ₉	D	L ₄	H ₁	H ₂
MLFI 50 086 B ZR	(L _{tot} – 194)×0,0124 + 6	2	110	86	250	260	40	40	88	6	110	97	53,4	101,4

1) $\overline{L_2}$ = total stroke + L_1 + 12 L_{tot} = total stroke + L_1 + 12 + 2×L_4.

Total stroke = effective stroke + $2 \times S$ (mm).

The allowance S designates a safety range suitable for the particular application and should be at least 85 mm; total stroke in mm.

Maximum single-piece support rail length L2 = 8 000 mm.

- ²⁾ G_{Law} = mass of carriage.
- 3) The values are single loads and apply when the underside of the actuator is fully supported. These must be reduced for combined loads. For design criteria of linear guidance system, see *INA Catalogue 801*.

⁴⁾ Utilisation of the T-slots is restricted by the holes.

Load directions

Linear actuator	Toothed belt/gears							
Designation	Toothed belt	Permissible toothed belt operating force	Maximum drive torque	Mass of toothed belt	Feed	Mass moment of inertia of both gears		
	Туре	Ν	Nm	kg/m	mm/rev.	$kg \cdot m^2$		
MLFI 50 086 B ZR	50 AT 10	1880	68,8	0,315	200	5×10 ⁻⁴		

							Permissible load on carriage guidance system ³⁾				Permissible on carriage	e torque e guidance s	Geometrical moment of inertia of support rail		
H ₃	H ₄	H ₅	L ₅	0	L ₆ ⁴⁾	D ₃ ⁴⁾	F _{yperm}	F _{0y perm}	F _{z perm}	F _{0z perm}	M _{0x perm}	M _{0y perm}	M _{0z perm}	ly	I _Z
							N	N	N	N	Nm	Nm	Nm	cm ⁴	cm ⁴
20	60	90	48	M6	129	28	1800	2 700	3 250	3 250	62	150	100	300	198

Carriage

T-slots

Linear actuator with track roller guidance system and toothed belt drive

Series MLFI..3ZR

	P	age
	Design and safety guidelines	16
۲ 0 -۱	Accuracy	19
Anna	Ordering example and ordering designation	20

A	Carriage
Features	
Linear actuators with track roller guidance system and toothed belt drive	
are complete units comprising:	
 a support rail – the supporting profiled section is extremely rigid and suitable for spanning large gaps; it has two high alloy steel shafts arranged in parallel 	
 a carriage running in the support rail – guidance by four track rollers, with integral lubrication and wiper unit 	
 a toothed belt drive with three parallel toothed belts 	
– two return units	
can support forces from all directions and moments about all axes	saddle plate made from anodised profiled aluminium
are suitable for moderate and heavy loads	with T-slots
are highly suitable for vertical mounting, since the three toothed belts allow very high operating forces	eccentric bolts for clearance-free adjustment of the track rollers against the raceway
can also be fitted with a second driven carriage	driven by three toothed belts
 have a clearance-free guidance system the track rollers are adjusted against the raceways by means of eccentric bolts 	 integral clamping devices for toothed belt on both sides lubrication and wiper unit funnel type lubrication nipples on longitudinal faces
run with high positional accuracy	Support rail with return unit
 if the servo controller COMPAX is used, the positional accuracy is ≤±0,1 mm 	
are suitable for:	
 accelerations up to 40 m/s² speeds up to 8 m/s 	
 operating temperatures from -20 °C to +80 °C 	
are easy to fit	
 the carriage and support rail have T-slots for standard T-nuts or fixing lugs. The components can therefore be easily screwed to the adjacent construction 	
are particularly suitable, due to the T-slots, for modular constructions	
are maintenance-free and the raceways can be relubricated	
 the toothed belt drive and return units require no maintenance 	support rail composite rail made from anodised profiled aluminium
 the raceways of the track rollers are lubricated by means of funnel type lubrication pipples and 	supporting section
oil-soaked felt inserts in the carriage	return unit housing made from anodised profiled aluminium

22

- are versatile in application due to a comprehensive range of accessories.
- bearings
 wiper brushes to protect the return area from contamination

- return shaft with maintenance-free tapered roller

INA 15

Linear actuator with track roller guidance system and toothed belt drive

Design and safety guidelines

Idling drive torque

With constant drive speed and a horizontally mounted actuator, the drive torque does not vary significantly as a function of the mass to be moved.

With increasing speed, the drive torque also increases (Figure 1).

Figure 1 · Idling drive torque in horizontal mounting position of actuators MLFI..3ZR

Combination with actuator components

In its role as a system supplier, INA offers not only actuators but also the appropriate components including coupling housings, couplings, gearboxes and motors (Table 1). These components are precisely matched to the actuators and thus complement the range of linear actuators in an optimum manner.

Table 1 · Possible cor	mbinations with	actuator	components
------------------------	-----------------	----------	------------

Linear actuator	Coupling housings	Couplings	Gearboxes	Motors	
MLFI 140 3ZR	KGEH MDKUE 15 3ZR-110/130/M8	KUP KM 170 25H7-25H7	GETR PL 115	MOT SMH 100	
			GETR PLE 120/115	MOT SMHA 100-BR	
	KGEH MDKUE 15 ZR-110/130/M8	KUP 560-66 25H7-25H7	GETR PL 115	MOT MH 105	
			GETR PLE 120/115	MOT MHA 105-BR	
	KGEH MLF 32 ZR-80/100/M6	KUP 560-56 20H7-25H7	GETR PL 90	MOT SMH 82	
			GETR PLE 80/90	MOT SMHA 82-BR	
			MOGE AS2-STI		
MLFI 200 3ZR	KGEH MDKUE 25 ZR-110/130/M8	KUP KM 400 32H7-25H7	GETR PL 115	MOT SMH 100	
				MOT SMHA 100-BR	
				MOT MH 105	
				MOT MHA 105-BR	

Drive variants

The possible positions of the drive are shown in Figure 2. Description of the suffixes: see Table 2.

Table 2 · Drive variants – suffixes

Drive system Suffix	Designs
OA	Without drive
AR	Drive shaft on right side
AL	Drive shaft on left side
RL	Drive shaft on both sides (right and left)

Figure 2 · Positions of the drive – schematic

Linear actuator with track roller guidance system and toothed belt drive

Lubrication

Track rollers

The track rollers in the carriages are greased with a high quality lithium complex soap grease in accordance with DIN 51825–K3K–30 and are maintenance-free.

Raceways

The raceways for the track rollers must be lubricated at particular intervals.

The relubrication intervals are essentially dependent on:

- the travel speed
- the load
- the operating temperature
- the stroke length
- the environmental conditions; the cleaner the operating environment, the lower the lubricant consumption.

Since it is not possible to calculate all the influencing factors, the time at which relubrication must be carried out and the quantity of lubricant which must be used can only be determined under actual operating conditions. If no precise data are available, the values according to Table 3 are valid for many applications.

Relubrication must be carried out at the latest when fretting corrosion first occurs – this can be identified by a reddish discolouration of the raceways or the outside surface of the track rollers. Subsequent lubrication intervals must be shortened!

The support rail raceways are lubricated by a felt insert which is soaked with oil by means of lubrication nipples in the side. Oils of type CL and CLP to DIN 51 517 with a viscosity of ISO VG 220 are recommended.

Relubrication should preferably be carried out with several partial quantities at various times instead of the complete quantity at the time of the relubrication interval. The support rail raceway is lubricated by an oil-soaked felt insert. Relubrication is carried out via two funnel type lubrication nipples to DIN 3 405-D6 ① on the longitudinal faces of the carriages ② (Figure 3). Relubrication can therefore be carried out from either the left or right side of the carriage.

The area around the lubrication holes and the lubricant must be clean!

Lubrication should only be carried out on linear actuators still warm from operation!

Move the carriage during lubrication!

Further information on lubricant quantities is given in *INA publication "ALE"*!

Figure 3 · Lubrication points - MLFI 140 3ZR, MLFI 200 3ZR

Table 3 · Relubrication quantities – guide values

Linear actuator	Oil quantity per carriage
	ml
MLFI 140 3ZR	2 to 3
MLFI 200 3ZR	4 to 5

Accuracy

The linear actuators are precision straightened and the tolerances are better than those to DIN 17 615 (Table 4 and Table 5). The tolerances are arithmetic mean values.

The method for determining the straightness of the support rail is shown in Figure 4. For lengths in excess of 6 000 mm, the straightness tolerance t_2 , t_3 may show a linear increase of 0,5 mm per 1000 mm.

Length of actuator L _{tot}	Tolerance
mm	mm
L _{tot} <1000	±2
1000 ≦L _{tot} <2000	±3
2000 ≦L _{tot} <4000	±4
4000 ≦L _{tot}	±5

Table 5 ·	Straightness	tolerance	of suc	port rail
	Struightiness	toicrunce	or Sup	portruit

Length	MLFI 1	40 3ZF	2	MLFI 200 3ZR			
of support rail	t ₂	t ₃	Torsion	t ₂	t ₃	Torsion	
mm	mm	mm	mm	mm	mm	mm	
<1000	0,6	0,5	0,5	0,8	0,7	0,5	
1000 ≦2000	1	0,7	1	1,2	0,9	1	
2000 ≦3000	1,4	0,9	1,5	1,6	1,1	1,5	
3000 ≦4000	1,7	1,2	2	1,9	1,4	2	
4000 ≦5000	2,1	1,4	2,5	2,3	1,6	2,5	
5000 ≦6000	2,7	1,7	3	2,9	1,9	3	
6000 ≦7000	3,1	2	3,5	3,3	2,2	3,5	
over 7000	3,6	2,3	4	3,8	2,5	4	

Figure 4 · Straightness tolerance of support rail for MLFI 140 3ZR, MLFI 200 3ZR

Crdering example and ordering designation

Ordering example

Linear actuator MLFI 200 3ZR Linear actuator with enclosed track roller guidance system MLFI Size 200 Drive type: three toothed belts 3ZR Drive shaft on left side AL 4648 mm Total length Ltot Total stroke (effective stroke + $2 \times S$) 4000 mm

Ordering designation:

1 off MLFI 200 3ZR AL/4 648-4 000 (Figure 5).

Note

Note total length of carriage!

For a second carriage, use the suffix W2! If two or more carriages are arranged in series, the distance between the carriages must be stated in the order!

Figure 5 · Ordering example and ordering designation – linear actuator MLFI 200 3ZR AL/4 648-4 000

Dimension tables

Linear actuator with track roller guidance system and toothed belt drive

Series MLFI..3ZR

Dimension table	e · Dimensions in mm																
Designation	Mass		Dimensions			Mounting dimensions											
	G _{tot} ≈kg	G _{Law} ²⁾ ≈kg	Η	В	L	L1	B1 ⁴⁾	B ₂ ⁴⁾	B ₃ ⁴⁾	B4 ³⁾	B ₅ ³⁾	B ₆ ³⁾	B ₇	В ₈ Р9	B9	D	L ₄
MLFI 140 3ZR	(L _{tot} – 160)×0,0138 +12,7	5,5	105	176	240	282	-	80	130	-	70	140	180	8	195	80	80
MLFI 200 3ZR	(L _{tot} – 231)×0,0300 + 29,2	13,3	145	250	365	405	35	115	185	50	110	210	260	10	263	115	115,5
1) $\overline{L_2}$ = total stroke + L ₁ + 12 L_{tot} = total stroke + L ₁ + 12 + 2×L ₄ .																	
Total stroke =	Total stroke = effective stroke + $2 \times S$ (mm).																
The allow particular stroke in l	The allowance S designates a safety range suitable for the particular application and should be at least 85 mm; total																

Maximum single-piece support rail length L2 = 8 000 mm.

- ²⁾ G_{Law} = mass of carriage.
- ³⁾ On MLFI 140: slot width 8 mm.
- On MLFI 200: slot width 10 mm.
- ⁴⁾ On MLFI 140: slot width 8 mm.
- On MLFI 200: slot width 8 mm.
- ⁵⁾ On MLFI 140: slot width 5 mm.
- On MLFI 200: slot width 8 mm.
- ⁶⁾ The values are single loads and apply when the underside of the actuator is fully supported. These must be reduced for combined loads. For design criteria of the linear guidance system, see *INA Catalogue 801*.
- 7) Utilisation of the T-slots is restricted by the holes.

Load directions

Linear actuator	Toothed belt/g	oothed belt/gears										
Designation	Toothed belt	Permissible toothed belt operating force	Maximum drive torque	Mass of toothed belts	Feed	Mass moment of inertia of both gears						
	Туре	Ν	Nm	kg/m	mm/rev.	$kg \cdot m^2$						
MLFI 140 3ZR	3×40 AT 10	4 500	115	0,75	160	8,2×10 ⁻⁴						
MLFI 200 3ZR	3×50 AT 10	5 6 4 0	207	0,95	230	35,2×10 ⁻⁴						

MLFI 200 3ZR

								Permissible load Permissible to on carriage guidance system ⁶⁾ on carriage gu system ⁶⁾				ble torque ge guidan	rque G idance m o o		Geometrical moment of inertia of support rail					
H ₁	H ₂	H ₃ ⁴⁾	H ₅ ⁵⁾	H ₄	L ₅	0	L ₆ ⁷⁾	L ₈	D ₃ ⁷⁾	Х	Y	F _{y perm}	F _{0y perm}	F _{z perm}	F _{0z perm}	M _{0x perm}	M _{0y perm}	M _{0z perm}	ly	Ι _z
												N	N	Ν	Ν	Nm	Nm	Nm	cm ⁴	cm ⁴
44	84	25	74,5	45	40	M6	73	94	30	120	24	2 400	4 0 0 0	4 500	4 500	320	210	180	1636	200
63	120,5	25	108	50	57,75	M8	78	209	36,5	182,5	28	4 800	8 0 0 0	10000	10 000	750	1100	788	7068	899

Carriage MLFI 200 3ZR with 6 slots Carriage MLFI 140 3ZR with 4 slots

Drive flange/drive shaft

Linear actuator with ball bearing and guideway assembly and toothed belt drive

Series MKUVE 20 B ZR

	Pa	age
	Design and safety guidelines	26
•@•	Accuracy	29
AAAAAA	Ordering example and ordering designation	30

Features	Carriage
 Linear actuators with ball bearing and guideway assembly and toothed belt drive are complete units comprising: a support rail – the supporting profiled section is extremely rigid and suitable for spanning large gaps one carriage running in the support rail – guidance by two KUVE carriages a toothed belt drive two return units can support forces from all directions and moments about all axes are suitable for moderate to heavy loads can also be fitted with more than one driven carriage have a clearance-free, preloaded guidance system run with high positional accuracy and free from stick-slip if the servo controller COMPAX is used, the positional accuracy is ≤±0,1 mm 	 saddle plate made from anodised profiled aluminium with T-slots two KWVE carriages driven by one toothed belt integral clamping devices for toothed belt on both sides funnel type lubrication nipples on longitudinal faces
- speeds up to 3 m/s	Support roll with roturn unit
 are easy to fit the carriage and support rail have T-slots for standard T-nuts or fixing lugs. The components can therefore be easily screwed to the adjacent construction are particularly suitable, due to the T-slots, for modular constructions are fitted with carriages with a relubrication facility the carriages are lubricated via lubrication nipples in the longitudinal sides of the carriages the carriage, toothed belt drive and return units require no maintenance are versatile in application due to a comprehensive range of accessories. 	 support rail composite rail made from anodised aluminium profiled supporting section, combined with guideway of linear guidance system KUVE.
	 return unit housing made from anodised profiled aluminium return shaft with maintenance-free ball bearings wiper brushes to protect the return area from

contamination

Linear actuator with ball bearing and guideway assembly and toothed belt drive

Design and safety guidelines

Idling drive torque

With constant drive speed and a horizontally mounted actuator, the drive torque does not vary significantly as a function of the mass to be moved.

With increasing speed, the drive torque also increases (Figure 1).

Figure 1 · Idling drive torque in horizontal mounting position of linear actuator MKUVE 20 B ZR

Combination with actuator components

In its role as a system supplier, INA offers not only actuators but also the appropriate components including coupling housings, couplings, gearboxes and motors (Table 1). These components are precisely matched to the actuators and thus complement the range of linear actuators in an optimum manner.

Table 1 ·	Possible	combinations	with	actuator	components
-----------	----------	--------------	------	----------	------------

Linear actuator	Coupling housings	Couplings	Gearboxes	Motors
MKUVE 20 B ZR	KGEH MLFI 50 B ZR-60/ 75/M5	KUP 560-56 20H7-20H7	GETR PL 70	MOT SMH 60
				MOT SMHA 60-BR
	KGEH MLFI 50 B ZR-80/100/M6	KUP 560-56 20H7-20H7	GETR PL 90	MOT SMH 82
				MOT SMHA 82-BR

Drive variants

The possible positions of the drive are shown in Figure 2. Description of the suffixes: see Table 2.

Table 2 · Drive variants – suffixes

Drive system Suffix	Designs
OA	Without drive
AR	Drive shaft on right side
AL	Drive shaft on left side
RL	Drive shaft on both sides (right and left)

INA 27

Linear actuator with ball bearing and guideway assembly and toothed belt drive

Lubrication

Raceways

The rolling system (the contact zone between the rolling element and raceways) must be lubricated.

The relubrication intervals are essentially dependent on:

- the travel speed
- the load
- the operating temperature
- the stroke length
- the environmental conditions; the cleaner the operating environment, the lower the lubricant consumption.

Since it is not possible to calculate all the influencing factors, the time at which relubrication must be carried out and the quantity of lubricant which must be used can only be determined under actual operating conditions. If no precise data are available, the values according to Table 3 are valid for many applications.

Relubrication must be carried out at the latest when fretting corrosion first occurs – this can be identified by a reddish discolouration of the raceways or the outside surface of the track rollers. Subsequent lubrication intervals must be shortened!

Relubrication should be carried out using a lithium complex soap grease with a mineral oil base. The viscosity of the base oil should be between ISO VG 68 and ISO VG 100.

Relubrication should preferably be carried out with several partial quantities at various times instead of the complete quantity at the time of the relubrication interval. Relubrication is carried out via two funnel type lubrication nipples to DIN 3 405-D6 ① on the longitudinal faces of the carriages ② (Figure 3). Relubrication can therefore be carried out from either the left or right side of the carriage.

The grease gun, the lubrication nipple, the area around the lubrication nipple and the grease must be clean! Lubrication should only be carried out on linear actuators

still warm from operation! Move the carriage during lubrication!

Further information on lubricant quantities is given in *INA publication "ALE"*!

Figure 3 · Lubrication points – MKUVE 20 B ZR

Table 3 · Relubrication quantities – guide values

Linear actuator	Grease quantity per carriage
	g
MKUVE 20 B ZR	approx. 4 to 5

Accuracy

The linear actuators are precision straightened and the tolerances are better than those to DIN 17 615 (Table 4 and Table 5). The tolerances are arithmetic mean values.

The method for determining the straightness of the support rail is shown in Figure 4. For lengths in excess of 6 000 mm, the straightness tolerance t_2 , t_3 may show a linear increase of 0,5 mm per 1000 mm.

Table 4 · Length tolerance of linear actuator	rs
---	----

Length of actuator L _{tot}	Tolerance
mm	mm
L _{tot} <1000	±2
1000 ≦L _{tot} <2000	±3
2000 ≦L _{tot} <4 000	± 4
4000 ≦L _{tot}	±5

Table 5 ·	Straightness	tolerance	of su	oport rail
	Straightiess	toicrunce	01 30	oportruit

Length	MKUVE 20 B ZR						
of support rail	t ₂	t ₃	Torsion				
mm	mm	mm	mm				
<1000	0,4	0,3	0,8				
1000 ≦2000	0,8	0,5	1				
2000 ≦3000	1,2	0,7	1,2				
3000 ≦4000	1,5	1	1,6				
4000 ≦5000	1,9	1,2	1,8				
5000 ≦6000	2,5	1,5	2				
6000 ≦7000	2,9	1,8	2,2				
over 7000	3,4	2,1	2,4				

Figure 4 · Straightness tolerance of support rail for MKUVE 20 B ZR

Linear actuator with ball bearing and guideway assembly and toothed belt drive

 ${ig X}$ Ordering example and ordering designation

Ordering example

Linear actuator MKUVE 20 B ZR	
Linear actuator with	
enclosed ball bearing and guideway assembly	MKUVE
Size	20 B
Drive type: one toothed belt	ZR
Drive shaft on both sides	RL
Carriage with T-slots	Ν
Total length Ltot	3 000 mm
Total stroke (effective stroke + $2 \times S$)	2534 mm

Ordering designation:

1 off MKUVE 20 B ZR RL N/3 000-2 534 (Figure 5).

Note

Note total length of carriage!

For a second carriage, use the suffix W2! If two or more carriages are arranged in series, the distance between the carriages must be stated in the order!

Figure 5 · Ordering example and ordering designation – linear actuator MKUVE 20 B ZR

Dimension tables

Linear actuator with ball bearing and guideway assembly and toothed belt drive

Series MKUVE 20 B ZR

MKUVE 20 B ZR

Dimension table	Dimension table · Dimensions in mm														
Designation	Mass			Dimen	sions		Mount	Mounting dimensions							
	G _{tot}		G _{Law} ³⁾	Н	В	L	L ₁	B ₁	B ₄	B ₇	В ₈ Р9	D	L ₄	H ₁	H ₂
MKUVE 20 B ZR	≈кд (L _{tot} – 194	4)×0.0124 +6	≈к <u>g</u> 2	110	86	250	260	40	40	88	6	110	97	53,4	101.4
1) L_2 = total strok L_{tot} = total strok Total stroke = eff M The allowar particular a stroke in m Maximum single 2) M Values are v 3) G_{Law} = mass of 4) The values are s the actuator is fu These must be r of the linear guid 5) Utilisation of the	ke + L ₁ + 1 e + L ₁ + 12 fective strol nce S desig pplication a m. -piece supplication a m. -piece supplication a carriage. ingle loads ully support reduced for fance syste T-slots is re	2 $2 + 2 \times L_4$. ke + 2×S (mm). gnates a safety rained should be at port rail length L loculating L _h only. and apply when red. combined loads combined loads comb	ange suit least 85 2 = 8 000 the under s. For des alogue 60 noles.	able for mm; to) mm. erside o sign crite 5.	the tal f eria	Loa	ad dire	II A Mox					M _{OZ}		
Linear actuat	or	Toothed belt/	gears												
Designation		Toothed belt	Permis toothe operati	sible d belt ng force	e Ma	aximum ive torqu	ue :	Mass of toothed	belt	Feed		Ma	ss morr tia of b	nent of oth gear	rs
		Туре	Ν		Nr	n		kg/m		mm/r	ev.	kg ·	m ²		
MKUVE 20 B 2	ZR	50 AT 10	1880		68	8,8	0	0,315		200		5×	10 ⁻⁴		

MKUVE 20 B ZR

								Basic load ra of carriage gu system ²⁾	tings uidance	Permissible on carriage system ⁴⁾	e torque e guidance		Geometric of inertia of support	al moment rail
H ₃	H ₄	H ₅	L ₅	0	L ₆ ⁵⁾	L ₇ 5)	D ₃ ⁵⁾	С	C ₀	M _{0x}	M _{0y}	M _{0z}	ly	Ιz
								kN	kN	Nm	Nm	Nm	cm ⁴	cm ⁴
20	60	90	48	M6	36	59,5	10	21,3	54	664	1900	1700	300	198

Carriage

Drive flange/drive shaft

T-slots

Linear actuator with ball monorail guidance system and two opposing carriages

Series MKKUSE 20 ZR

	P	age
	Design and safety guidelines	36
• @•	Accuracy	39
Anna	Ordering example and ordering designation	40

A	Carriage
Features	
and two opposing carriages	6 7 0
are complete units comprising:	
 a support rail – the supporting profiled section is extremely rigid and suitable for spanning large gaps two opposing carriages running in the support rail – guidance by KUSE carriages a toothed belt drive with a vertical arrangement 	
– two return units	
 allow synchronised opposing motion of the carriages due to the vertical arrangement and linkage of the toothed belts 	
can support forces from all directions and moments about all axes	saddle plate made from anodised profiled aluminium with T-slots
are suitable for moderate to heavy loads	one KWSE carriage
have a clearance-free, preloaded guidance system	integral clamping devices for toothed belt on one side
 run with high positional accuracy and free from stick-slip if the servo controller COMPAX is used, the positional accuracy per carriage is ≤±0,1 mm 	funnel type lubrication nipples on longitudinal faces
are suitable for:	
 accelerations up to 30 m/s² 	Support rail with return unit
- speeds up to 3 m/s	
$=$ operating temperatures non $=$ 10 \pm 10 \pm 80 \pm	
 the carriages and support rail have T-slots for standard T-nuts or fixing lugs. The components can therefore be easily screwed to the adjacent construction 	
 are particularly suitable, due to the T-slots, for modular constructions 	
are maintenance-free and the running system can be relubricated	
 The carriages, toothed bell drive and return units require no maintenance the running system is relubricated via lubrication nipples 	
 the carriages, toolred belt drive and return units require no maintenance the running system is relubricated via lubrication nipples in the longitudinal sides of the carriages 	
 the carriages, toorred belt drive and return units require no maintenance the running system is relubricated via lubrication nipples in the longitudinal sides of the carriages are versatile in application due to a comprehensive range of accessories. 	support rail - composite rail made from anodised aluminium profiled supporting section, combined with guideway of linear recirculating ball bearing and guideway assembly KUSE

34 **INA**

Design and safety guidelines

Idling drive torque

With constant drive speed and a horizontally mounted actuator, the drive torque does not vary significantly as a function of the mass to be moved.

With increasing speed, the drive torque also increases (Figure 1).

Figure 1 · Idling drive torque in horizontal mounting position of linear actuator MKKUSE 20 ZR

Combination with actuator components

In its role as a system supplier, INA offers not only actuators but also the appropriate components including coupling housings, couplings, gearboxes and motors (Table 1). These components are precisely matched to the actuators and thus complement the range of linear actuators in an optimum manner.

Linear actuator	Coupling housings	Couplings	Gearboxes	Motors
MKKUSE 20 ZR	KGEH MLF 32 ZR ZR-80/100/M6	KUP 560-56 20H7-20H7	GETR PL 90	MOT SMH 82
				MOT SMHA 82-BR
			GETR PLE 80/90	
			MOGE AS2-STI	
	KGEH MLF 32 ZR-45/70/75	KUP 50-40-2 20H7-14H7	MOGE AS1-PLE 60	

Drive variants

The possible positions of the drive are shown in Figure 2. Description of the suffixes: see Table 2.

Table 2 · Drive variants – suffixes

Drive system Suffix	Designs
AR	Drive shaft on right side
AL	Drive shaft on left side
RL	Drive shaft on both sides (right and left)

Figure 2 $\cdot\,$ Positions of the drive – schematic

Lubrication

Raceways

The rolling system (the contact zone between the rolling element and raceways) must be lubricated.

The relubrication intervals are essentially dependent on:

- the travel speed
- the load
- the operating temperature
- the stroke length
- the environmental conditions; the cleaner the operating environment, the lower the lubricant consumption.

Since it is not possible to calculate all the influencing factors, the time at which relubrication must be carried out and the quantity of lubricant which must be used can only be determined under actual operating conditions. If no precise data are available, the values according to Table 3 are valid for many applications.

Relubrication must be carried out at the latest when fretting corrosion first occurs – this can be identified by a reddish discolouration of the raceways or the outside surface of the track rollers. Subsequent lubrication intervals must be shortened!

Relubrication should be carried out using a lithium complex soap grease with a mineral oil base. The viscosity of the base oil should be between ISO VG 68 and ISO VG 100.

Relubrication should preferably be carried out with several partial quantities at various times instead of the complete quantity at the time of the relubrication interval. Relubrication is carried out via two funnel type lubrication nipples to DIN 3 405-D6 ① on the longitudinal faces of the carriages ② (Figure 3). Relubrication can therefore be carried out from either the left or right side of the carriage.

The grease gun, the lubrication nipple, the area around the lubrication nipple and the grease must be clean! Lubrication should only be carried out on linear actuators

still warm from operation!

Move the carriage during lubrication!

Further information on lubricant quantities is given in *INA publication "ALE"*!

Figure 3 · Lubrication points – MKKUSE 20 ZR

Table 3 · Relubrication quantities – guide values

Linear actuator	Grease quantity per carriage
	g
MKKUSE 20 ZR	3 to 4

Accuracy

The linear actuators are precision straightened and the tolerances are better than those to DIN 17 615 (Table 4 and Table 5). The tolerances are arithmetic mean values.

The method for determining the straightness of the support rail is shown in Figure 4. For lengths in excess of 6 000 mm, the straightness tolerance t_2 , t_3 may show a linear increase of 0,5 mm per 1000 mm.

Length of actuator L _{tot}	Tolerance
mm	mm
L _{tot} <1000	±2
$1000 \leq L_{tot} < 2000$	±3
$2000 \leq L_{tot} < 4000$	±4
4000 ≦L _{tot}	±5

Table 5 ·	Straightness	tolerance	of suc	port rail
	Struightiness	toicrunce	or Sup	portruit

Length	MKKUSE 20 ZR							
of support rail	t ₂	t ₃	Torsion					
mm	mm	mm	mm					
<1000	0,4	0,3	0,8					
1000 ≦2000	0,8	0,5	1					
2000 ≦3000	1,2	0,7	1,2					
3000 ≦4000	1,5	1	1,6					
4000 ≦5000	1,9	1,2	1,8					
5000 ≦6000	2,5	1,5	2					
6000 ≦7000	2,9	1,8	2,2					
over 7000	3,4	2,1	2,4					

Figure 4 · Straightness tolerance of support rail for MKKUSE 20 ZR

Ordering example and ordering designation

Ordering example

Linear actuator MKKUSE 20 ZR	
Linear actuator with opposing carriages and	
enclosed ball bearing and guideway assembly	MKKUSE
Size	20
Drive type: two toothed belts	ZR
Drive shaft on both sides	RL
Carriage with T-slots	Ν
Total length L _{tot}	3100 mm
Total stroke = $2 \times \text{effective stroke} + 2 \times \text{S}$	2530 mm
(effective stroke per carriage in mm)	

Ordering designation:

1 off MKKUSE 20 ZR RL N/3100-2530 (Figure 5).

<u>/!\</u>

Note total length of each carriage! Carriages with T-slots have the suffix N!

Figure 5 · Ordering example and ordering designation – linear actuator MKKUSE 20 ZR

Dimension tables

Linear actuator with ball monorail guidance system and two opposing carriages

Series MKKUSE 20 ZR

Dimension table	Dimension table · Dimensions in mm																
Designation	Mass			Dimensions			Mounting dimensions										
	G _{tot} ≈kg	G _{Law} ³⁾ ≈kg	В	Н	L	B ₁	B ₄	B ₇	B ₈ P9	D	D ₁ G7	D ₂	D ₃ ⁵⁾	L ₄	L ₅ ⁵⁾	H ₂	H ₃
MKKUSE 20 ZR	(L _{tot} – 160)×0,0125 +6	1,5	86	110	155	40	40	88	6	80	70	61	10	80	36	80	20
¹⁾ $\overline{L_2}$ = total stroke + 2×L + L _{min} ⁶⁾ L_{tot} = total stroke + 2×L + 2×L ₄ + L _{min} ⁶⁾ . Total stroke = 2×effective stroke + 2×S (effective stroke per carriage in mm).					'							'		'			

The allowance S designates a safety range suitable for the particular application and should be at least 85 mm; total stroke in mm.

Maximum single-piece support rail length L2 = 4 000 mm (longer support rails may be available by agreement).

- ²⁾ Values are valid for calculating L_h only.
- ³⁾ G_{Law} = mass of carriage.

 ⁴⁾ The values are single loads and apply when the underside of the actuator is fully supported. They relate to the individual carriages. For design criteria of the linear guidance system, see *INA Catalogue 605*.

⁵⁾ Utilisation of the T-slots is restricted by the holes.

⁶⁾ The minimum spacing between the carriages L_{min} is dependent on the application and should be at least 20 mm.

Load directions

Linear actuator	Toothed belt/g	othed belt/gears								
Designation	Toothed belt	Permissible toothed belt operating force	Maximum drive torque	Mass of toothed belt	Feed	Mass moment of inertia of both gears				
	Туре	Ν	Nm	kg/m	mm/rev.	$kg \cdot m^2$				
MKKUSE 20 ZR	32 AT 5	650	18	0,068	175	2,2×10 ⁻⁴				

								d ratings of uidance sy	/stem ²⁾⁴⁾	Permissible torque on carriage guidance system ²⁾⁴⁾					
							Load direction I: Compressive load		Load direction II: Tensile load		Load direction III: Lateral load]		
H ₄	H ₅	H ₆	01	Т	Х	Y	С	C ₀	С	C ₀	С	C ₀	M _{0x perm}	M _{0y perm}	M _{0z perm}
							kN	kN	kN	kN	kN	kN	Nm	Nm	Nm
60	90	107	M6	2+0,2	47,7	13	22	52	17,5	33,5	16,3	36	330	250	240

Carriage

T-slots

Linear actuator with track roller guidance system and two opposing carriages

Series MKLF..ZR

	P	age
	Design and safety guidelines	46
۲ 0+	Accuracy	49
Amm	Ordering example and ordering designation	50

A	Carriage
Features Linear actuators with track roller guidance system and two opposing carriages	
 are complete units comprising: a support rail – the supporting profiled section is extremely rigid and suitable for spanning large gaps two carriages running on the support rail (one carriage with a counterstay arrangement) – guidance by means of four track rollers a toothed belt drive two return units plastic lubrication and wiper units on the end faces of the carriages 	
 allow synchronised opposing motion of the carriages due to the toothed belt linkage of the carriages can support forces from all directions and moments about all axes are suitable for light to moderate loads have a clearance-free guidance system the track rollers are adjusted against the raceways by means of eccentric bolts 	 saddle plate made from anodised profiled aluminium, with and without counterstay arrangement; the toothed belt passes through the carriage with the counterstay four maintenance-free track rollers eccentric bolts for clearance-free adjustment of the track rollers against the raceway driven by toothed belt integral clamping devices for toothed belt on both side funnel type lubrication nipples on end faces
 run with high positional accuracy if the servo controller COMPAX is used, 	Support rail with return unit
 the positional accuracy per carriage is ≤±0,1 mm are suitable for: accelerations up to 40 m/s² speeds up to 8 m/s operating temperatures from -20 °C to +80 °C 	C C C C C C C C C C C C C C C C C C C
 are easy to fit the carriages have threaded holes and the support rail has T-slots for standard T-nuts or fixing lugs 	
are particularly suitable, due to the T-slots, for modular constructions	
are sealed by means of lubrication and wiper units on the end faces	, "I'S A

- are also available in a corrosion-resistant design
- are maintenance-free and the raceways can be relubricated
 - the toothed belt drive and return units require no maintenance
 - the raceways and track rollers are lubricated by means of funnel type lubrication nipples in the carriages
- are versatile in application due to a comprehensive range of accessories.

support rail

52

- composite rail made from anodised profiled aluminium supporting section
- on the counterstay carriage side,
- the underside is milled out to the centre point return unit
- housing made from anodised profiled aluminium
- return shaft with maintenance-free ball bearings
- wiper brushes to protect return area from contamination

Design and safety guidelines

Idling drive torque

With constant drive speed and a horizontally mounted actuator, the drive torque does not vary significantly as a function of the mass to be moved.

With increasing speed, the drive torque also increases (Figure 1).

Figure 1 · Idling drive torque in horizontal mounting position of linear actuator MKLF..ZR

Combination with actuator components

In its role as a system supplier, INA offers not only actuators but also the appropriate components including coupling housings, couplings, gearboxes and motors (Table 1). These components are precisely matched to the actuators and thus complement the range of linear actuators in an optimum manner.

Table 1 · Possible combinations	with actuator	components
---------------------------------	---------------	------------

Linear actuator	Coupling housings	Couplings	Gearboxes	Motors
MKLF 52ZR	KGEH MLF 52 ZR-110/130/M8	KUP 560-66 20H7-25H7	GETR PL 115	MOT SMH 100
			GETR PL 120/115	MOT SMHA 100-BR
				MOT MH 105
				MOT MHA 105-BR
	KGEH MLF 52 ZR-80/100/M6	KUP 560-56 20H7-20H7	GETR PL 90	MOT SMH 82
			GETR PLE 80/90	MOT SMHA 82-BR
MKLF 32 086 ZR	KGEH MLF 32 ZR-80/100/M6	KUP 560-56 20H7-20H7	GETR PL 90	
			GETR PLE 80/90	
			MOGE AS2-STI	
	KGEH MLF 32 ZR-45/70/75	KUP 50-40-2 20H7-14H7	MOGE AS1-PLE 60	

Drive variants

The possible positions of the drive are shown in Figure 2. Description of the suffixes: see Table 2.

Table 2 · Drive variants – suffixes

Drive system Suffix	Designs
AR	Drive shaft on right side
AL	Drive shaft on left side
RL	Drive shaft on both sides (right and left)

Lubrication

Track rollers

The track rollers in the carriage are greased with a high quality lithium complex soap grease in accordance with DIN 51825-K3K-30 and are maintenance-free.

Raceways

The raceways for the track rollers must be lubricated at particular intervals.

The relubrication intervals are essentially dependent on:

- the travel speed
- the load
- the operating temperature
- the stroke length
- the environmental conditions; the cleaner the operating environment, the lower the lubricant consumption.

Since it is not possible to calculate all the influencing factors, the time at which relubrication must be carried out and the quantity of lubricant which must be used can only be determined under actual operating conditions. If no precise data are available, the values according to Table 3 are valid for many applications.

Relubrication must be carried out at the latest when fretting corrosion first occurs – this can be identified by a reddish discolouration of the raceways or the outside surface of the track rollers. Subsequent lubrication intervals must be shortened!

The support rail raceways are lubricated by a felt insert which is soaked with oil by means of lubrication nipples in the side. Oils of type CL and CLP to DIN 51 517 with a viscosity of ISO VG 220 are recommended.

If lubrication by means of lubricating varnish is used, it must be borne in mind that this only provides effective lubrication for a significantly shorter time than oils!

Relubrication should preferably be carried out with several partial quantities at various times instead of the complete quantity at the time of the relubrication interval. Relubrication is carried out via lubrication nipples on the end faces of the carriages (1), (2) (Figure 3). The oil quantity according to Table 3 should be distributed evenly to all four lubrication points!

The grease gun, the lubrication nipple, the area around the lubrication nipple and the oil must be clean!

Lubrication should only be carried out on linear actuators still warm from operation!

Move the carriage during lubrication!

Further information on lubricant quantities is given in *INA publication "ALE"*!

Figure 3 · Lubrication points

Linear actuator	Oil quantity per carriage
	ml
MKLF 32ZR	1 to 2
MKLF 52130 ZR	2 to 3
MKLF 52145 ZR	2 to 3
MKLF 52155 ZR	2 to 3

Accuracy

The linear actuators are precision straightened and the tolerances are better than those to DIN 17 615 (Table 4 and Table 5). The tolerances are arithmetic mean values.

The method for determining the straightness of the support rail is shown in Figure 4. For lengths in excess of 6 000 mm, the straightness tolerance t_2 , t_3 may show a linear increase of 0,5 mm per 1000 mm.

Length of actuator L _{tot}	Tolerance
mm	mm
L _{tot} <1000	±2
$1000 \leq L_{tot} < 2000$	±3
$2000 \leq L_{tot} < 4000$	±4
4000 ≦L _{tot}	±5

Table 5	Straightness	tolerance of	support rail
	Juagnuicss		Support run

Length of support rail mm <1000 1000 ≤2000 2000 ≤3000 3000 ≤4000 4000 ≤5000	MKLF 32ZR, MKLF 52ZR							
of support rail	t ₂	t ₃	Torsion					
mm	mm	mm	mm					
<1000	0,6	0,5	0,8					
1000 ≦2000	0,8	0,6	1					
2000 ≦3000	1,2	0,7	1,5					
3000 ≦4000	1,5	1	2					
4000 ≦5000	1,9	1,2	2,5					
5000 ≦6000	2,5	1,5	3					
6000 ≦7000	2,9	1,8	3,5					
over 7000	3,4	2,1	4					

Figure 4 · Straightness tolerance of support rail for MKLF 32..ZR, MKLF 52..ZR

Crdering example and ordering designation

Ordering example

Linear actuator MKLF 32 ZRLinear actuator with track roller guidancesystem and two opposing carriagesMKLFSize32Width of carriage86 mmDrive type: one toothed beltZRDrive shaft on left sideALTotal length L_{tot}5100 mmTotal stroke (2×effective stroke + 2×S)4518 mm

Ordering designation:

1 off MKLF 32 086 ZR AL/5100-4518 (Figure 5).

<u>/!\</u>

Note total length of each carriage! The corrosion-resistant design has the suffix VA!

Figure 5 · Ordering example and ordering designation – linear actuator MKLF 32 ZR

Dimension tables

Linear actuator with track roller guidance system and two opposing carriages

Series MKLF..ZR

MKI	_F	ZF
-----	----	----

MKLF..ZR

Dimension table · Dimensions in mm																			
Designation	Mass	Dimensions			Mounting dimensions														
	G _{tot} ≈ka	G _{Law} ²⁾ ≈ka	G _{Law} ²⁾ counterstay ≈kg	Н	В	L	B ₁	B ₂	B ₃	B ₄	D	D ₁	D ₂	H ₁	H ₂	H ₃	H ₄	H ₅	H ₆
MKLF 32 086 ZR	(L _{tot} − 160)×0,0060 + 5,1	0,8	1,2	82	86	155	59	43	75	94	80	70	61	41,5	81,3	25	-	50	47
MKLF 52 130 ZR	(L _{tot} - 231)×0,0128 + 12,25	2	2,75	119	130	200	90	80	112	140	115	95	76	60,5	117,7	25	50	72,8	65,4
MKLF 52 145 ZR	(L _{tot} – 231)×0,0128 +14,85	3,2	4,05	125	145	245	105	80	112	155	115	95	76	60,5	117,7	25	50	71,2	65,4
MKLF 52 155 ZR	(L _{tot} - 231)×0,0128 +18,35	5	5,95	125	155	260	115	80	112	165	115	95	76	60,5	117,7	25	50	70	65,4

1) $\overline{L_2}$ = total stroke + 2×L + 12 + L_{min}⁵⁾ L_{tot} = total stroke + 2×L + 2×L₄ + 12 + L_{min}⁵⁾. Total stroke = $2 \times \text{effective stroke} + 2 \times \text{S}$ (effective stroke per carriage in mm).

The allowance S designates a safety range suitable for the particular application and should be at least 85 mm; total stroke in mm.

- Maximum single-piece support rail length L2 = 8 000 mm.
- ²⁾ G_{Law} = mass of carriage.
- ³⁾ The values are single loads and apply as values for the individual carriages. For design criteria of linear guidance system, see *INA Catalogue 801*.
- ⁴⁾ Geometrical moments of inertia of support rail on the open side.
- $^{5)}$ The minimum spacing L_{min} (of the carriages) is dependent on the application and should be at least 20 mm.
- ⁶⁾ The underside of the support rail is open over this length.

Load directions

Linear actuator	Toothed belt/g	Toothed belt/gears													
Designation	Toothed belt	Permissible toothed belt operating force	Maximum drive torque	Mass of toothed belt	Feed	Mass moment of inertia of both gears									
	Туре	Ν	Nm	kg/m	mm/rev.	$kg\cdot m^2$									
MKLF 32 086 ZR	20 AT 5	640	18	0,068	175	2,2×10 ⁻⁴									
MKLF 52 130 ZR	32 AT 10	1750	73,5	0,2	270	12,6×10 ⁻⁴									
MKLF 52 145 ZR	32 AT 10	1750	73,5	0,2	270	12,6×10 ⁻⁴									
MKLF 52 155 ZR	32 AT 10	1750	73,5	0,2	270	12,6×10 ⁻⁴									

							Permissible load on carriage guidance system ³⁾				Permissible torque on carriage guidance system ³⁾						Geometrical moment of inertia of support rail ⁴⁾		
L1	L ₄	L ₅	L ₆	L ₇	0	01	Т	F _{y perm}	F _{0y perm}	F _{z perm}	F _{0z perm}	M _{x perm}	M _{0x perm}	M _{y perm}	M _{0y perm}	M _{z perm}	M _{0z perm}	ly	Ι _Z
±0,7							+0,2	Ν	Ν	Ν	Ν	Nm	Nm	Nm	Nm	Nm	Nm	cm ⁴	cm ⁴
50	80	14	102	80	M 8	M6	2	850	1400	1000	1000	11	18	30	30	26	43	104	76
55	115,5	19	131	120	M10	M8	3,5	1500	2500	3500	3500	33	52	105	105	47	78	381	272
80	115,5	19	137	120	M10	M8	3,5	2400	4000	4500	4500	51	84	236	236	126	210	381	272
90	115,5	24	137	120	M12	M8	3,5	4800	7900	8000	8000	101	166	480	480	288	474	381	272

Carriage

Drive flange/drive shaft for MKLF 32..ZR

T-slots

INA-Schaeffler KG